Skip to content
Skip to content

DevLinc Agent

Overview

DevLinc is BrainSAIT's AI agent specialized in development automation. It assists with code generation, testing, documentation, and deployment tasks to accelerate software development workflows.


Core Capabilities

1. Code Generation

Functions: - Feature implementation - Boilerplate generation - Code refactoring - Test generation

2. Code Review

Functions: - Static analysis - Best practice checking - Security scanning - Performance review

3. Documentation

Functions: - API documentation - Code comments - README generation - Architecture diagrams

4. Testing

Functions: - Unit test generation - Integration test support - Test coverage analysis - Bug reproduction


Architecture

graph TB
    subgraph "DevLinc Agent"
        A[Task Input] --> B[Intent Analyzer]
        B --> C[Code Generator]
        B --> D[Code Reviewer]
        B --> E[Doc Generator]

        C --> F[Output]
        D --> F
        E --> F
    end

    G[Codebase] --> B
    H[Templates] --> C
    I[Rules] --> D

Use Cases

Feature Development

Scenario: Implement new API endpoint

Input:

Create a FHIR-compliant endpoint for submitting claims
with validation and error handling.

Output: - Complete endpoint code - Request/response models - Validation logic - Unit tests - API documentation

Code Refactoring

Scenario: Improve code quality

Input:

Refactor the claim processing module to:
- Reduce complexity
- Improve testability
- Add type hints

Output: - Refactored code - Explanation of changes - Before/after comparison - Updated tests

Test Generation

Scenario: Increase test coverage

Input:

Generate unit tests for the ValidationService class
covering edge cases and error conditions.

Output:

import pytest
from services.validation import ValidationService

class TestValidationService:

    @pytest.fixture
    def service(self):
        return ValidationService()

    def test_validate_claim_success(self, service):
        claim = create_valid_claim()
        result = service.validate(claim)
        assert result.is_valid
        assert len(result.errors) == 0

    def test_validate_claim_missing_patient(self, service):
        claim = create_claim_without_patient()
        result = service.validate(claim)
        assert not result.is_valid
        assert "patient" in result.errors[0].field

    # Additional tests...


Integration

IDE Integration

Supported IDEs: - VS Code (extension) - JetBrains (plugin) - Neovim (LSP)

Features: - Inline suggestions - Code completion - Quick actions - Documentation hover

CI/CD Integration

# .github/workflows/devlinc.yml
name: DevLinc Review

on: [pull_request]

jobs:
  review:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - uses: brainsait/devlinc-action@v1
        with:
          task: review
          token: ${{ secrets.DEVLINC_TOKEN }}

API Access

from brainsait.agents import DevLinc

devlinc = DevLinc()

# Generate code
result = devlinc.generate(
    task="Create REST endpoint",
    context={
        "language": "python",
        "framework": "fastapi",
        "requirements": [...]
    }
)

# Review code
review = devlinc.review(
    code=source_code,
    rules=["security", "performance"]
)

Configuration

Agent Configuration

# devlinc.yaml
name: DevLinc
version: 1.0

skills:
  - code-generator
  - code-reviewer
  - test-generator
  - doc-generator

config:
  default_language: python
  style_guide: pep8
  test_framework: pytest
  doc_format: google

rules:
  security:
    enabled: true
    severity: high
  performance:
    enabled: true
    severity: medium

Project Configuration

# .devlinc.yaml in project root
language: python
framework: fastapi
test_framework: pytest
doc_format: mkdocs

templates:
  endpoint: ./templates/endpoint.py
  test: ./templates/test.py

ignore:
  - "**/migrations/**"
  - "**/vendor/**"

Supported Languages

Language Generation Review Tests Docs
Python Full Full Full Full
TypeScript Full Full Full Full
JavaScript Full Full Full Full
Go Full Partial Full Partial
Rust Partial Partial Partial Partial

Best Practices

Effective Prompts

Good:

Create a function that validates FHIR R4 Claim resources
against the NPHIES profile. It should check required fields,
validate code systems, and return detailed error messages.
Input: FHIR Claim JSON
Output: ValidationResult with errors list

Not as Good:

Write validation code

Code Review

  1. Provide context - Include relevant files
  2. Specify focus - Security, performance, etc.
  3. Set severity - What level of issues to report
  4. Review output - Verify suggestions

Test Generation

  1. Identify coverage gaps
  2. Include edge cases
  3. Test error conditions
  4. Verify generated tests

Performance Metrics

Metric Target Current
Code generation accuracy > 85% 88%
Review false positive rate < 10% 8%
Test generation coverage > 80% 82%
Documentation completeness > 90% 92%


Last updated: January 2025